Data Analytics

Events Template

Learn how to write code in Python, implement related Python libraries, utilize artificial intelligence (AI) and machine learning, harness Excel for analysis, and visualize the results.

  • Start Date
    Feb
    09
    24 weeks, Mon, Wed & Thu 5:00 PM - 8:00 PM (MT)
    Online
    Session information
    Sessions
    Session 1
    Mon, Feb 09 05:00 pm MST - Mon, Feb 09 08:00 pm MST
    Online
    Session 2
    Wed, Feb 11 05:00 pm - Wed, Feb 11 08:00 pm
    Online
    Session 3
    Thu, Feb 12 05:00 pm - Thu, Feb 12 08:00 pm
    Online
    Session 4
    Mon, Feb 16 05:00 pm - Mon, Feb 16 08:00 pm
    Online
    Session 5
    Wed, Feb 18 05:00 pm - Wed, Feb 18 08:00 pm
    Online
    Session 6
    Thu, Feb 19 05:00 pm - Thu, Feb 19 08:00 pm
    Online
    Session 7
    Mon, Feb 23 05:00 pm - Mon, Feb 23 08:00 pm
    Online
    Session 8
    Wed, Feb 25 05:00 pm - Wed, Feb 25 08:00 pm
    Online
    Session 9
    Thu, Feb 26 05:00 pm - Thu, Feb 26 08:00 pm
    Online
    Session 10
    Mon, Mar 02 05:00 pm - Mon, Mar 02 08:00 pm
    Online
    Session 11
    Wed, Mar 04 05:00 pm - Wed, Mar 04 08:00 pm
    Online
    Session 12
    Thu, Mar 05 05:00 pm - Thu, Mar 05 08:00 pm
    Online
    Session 13
    Mon, Mar 09 05:00 pm - Mon, Mar 09 08:00 pm
    Online
    Session 14
    Wed, Mar 11 05:00 pm - Wed, Mar 11 08:00 pm
    Online
    Session 15
    Thu, Mar 12 05:00 pm - Thu, Mar 12 08:00 pm
    Online
    Session 16
    Mon, Mar 16 05:00 pm - Mon, Mar 16 08:00 pm
    Online
    Session 17
    Wed, Mar 18 05:00 pm - Wed, Mar 18 08:00 pm
    Online
    Session 18
    Thu, Mar 19 05:00 pm - Thu, Mar 19 08:00 pm
    Online
    Session 19
    Mon, Mar 23 05:00 pm - Mon, Mar 23 08:00 pm
    Online
    Session 20
    Wed, Mar 25 05:00 pm - Wed, Mar 25 08:00 pm
    Online
    Session 21
    Thu, Mar 26 05:00 pm - Thu, Mar 26 08:00 pm
    Online
    Session 22
    Mon, Mar 30 05:00 pm - Mon, Mar 30 08:00 pm
    Online
    Session 23
    Wed, Apr 01 05:00 pm - Wed, Apr 01 08:00 pm
    Online
    Session 24
    Thu, Apr 02 05:00 pm - Thu, Apr 02 08:00 pm
    Online
    Session 25
    Mon, Apr 06 05:00 pm - Mon, Apr 06 08:00 pm
    Online
    Session 26
    Wed, Apr 08 05:00 pm - Wed, Apr 08 08:00 pm
    Online
    Session 27
    Thu, Apr 09 05:00 pm - Thu, Apr 09 08:00 pm
    Online
    Session 34
    Mon, Apr 27 05:00 pm - Mon, Apr 27 08:00 pm
    Online
    Session 35
    Wed, Apr 29 05:00 pm - Wed, Apr 29 08:00 pm
    Online
    Session 36
    Thu, Apr 30 05:00 pm - Thu, Apr 30 08:00 pm
    Online
    Session 37
    Mon, May 04 05:00 pm - Mon, May 04 08:00 pm
    Online
    Session 38
    Wed, May 06 05:00 pm - Wed, May 06 08:00 pm
    Online
    Session 39
    Thu, May 07 05:00 pm - Thu, May 07 08:00 pm
    Online
    Session 40
    Mon, May 11 05:00 pm - Mon, May 11 08:00 pm
    Online
    Session 41
    Wed, May 13 05:00 pm - Wed, May 13 08:00 pm
    Online
    Session 42
    Thu, May 14 05:00 pm - Thu, May 14 08:00 pm
    Online
    Session 43
    Mon, May 18 05:00 pm - Mon, May 18 08:00 pm
    Online
    Session 44
    Wed, May 20 05:00 pm - Wed, May 20 08:00 pm
    Online
    Session 45
    Thu, May 21 05:00 pm - Thu, May 21 08:00 pm
    Online
    Session 46
    Tue, May 26 05:00 pm - Tue, May 26 08:00 pm
    Online
    Session 47
    Wed, May 27 05:00 pm - Wed, May 27 08:00 pm
    Online
    Session 48
    Thu, May 28 05:00 pm - Thu, May 28 08:00 pm
    Online
    Session 49
    Mon, Jun 01 05:00 pm - Mon, Jun 01 08:00 pm
    Online
    Session 50
    Wed, Jun 03 05:00 pm - Wed, Jun 03 08:00 pm
    Online
    Session 51
    Thu, Jun 04 05:00 pm - Thu, Jun 04 08:00 pm
    Online
    Session 52
    Mon, Jun 08 05:00 pm - Mon, Jun 08 08:00 pm
    Online
    Session 53
    Wed, Jun 10 05:00 pm - Wed, Jun 10 08:00 pm
    Online
    Session 54
    Thu, Jun 11 05:00 pm - Thu, Jun 11 08:00 pm
    Online
    Session 55
    Mon, Jun 15 05:00 pm - Mon, Jun 15 08:00 pm
    Online
    Session 56
    Wed, Jun 17 05:00 pm - Wed, Jun 17 08:00 pm
    Online
    Session 57
    Thu, Jun 18 05:00 pm - Thu, Jun 18 08:00 pm
    Online
    Session 58
    Mon, Jun 22 05:00 pm - Mon, Jun 22 08:00 pm
    Online
    Session 59
    Wed, Jun 24 05:00 pm - Wed, Jun 24 08:00 pm
    Online
    Session 60
    Thu, Jun 25 05:00 pm - Thu, Jun 25 08:00 pm
    Online
    Session 61
    Mon, Jun 29 05:00 pm - Mon, Jun 29 08:00 pm
    Online
    Session 62
    Wed, Jul 01 05:00 pm - Wed, Jul 01 08:00 pm
    Online
    Session 63
    Thu, Jul 02 05:00 pm - Thu, Jul 02 08:00 pm
    Online
    Session 64
    Mon, Jul 06 05:00 pm - Mon, Jul 06 08:00 pm
    Online
    Session 65
    Wed, Jul 08 05:00 pm - Wed, Jul 08 08:00 pm
    Online
    Session 66
    Thu, Jul 09 05:00 pm - Thu, Jul 09 08:00 pm
    Online
    Session 67
    Mon, Jul 13 05:00 pm - Mon, Jul 13 08:00 pm
    Online
    Session 68
    Wed, Jul 15 05:00 pm - Wed, Jul 15 08:00 pm
    Online
    Session 69
    Thu, Jul 16 05:00 pm - Thu, Jul 16 08:00 pm
    Online
    Session 70
    Mon, Jul 20 05:00 pm - Mon, Jul 20 08:00 pm
    Online
    Session 71
    Wed, Jul 22 05:00 pm - Wed, Jul 22 08:00 pm
    Online
    • $7,995.00 excl. Tax
None of these dates work for you? Suggest another date & time

Description

The Data Analytics Certificate at Digital Workshop Center is a comprehensive approach towards learning problem-solving techniques for analyzing large data sets. Our program teaches you how to write code in Python, implement related Python libraries, utilize artificial intelligence (AI) and machine learning, harness Excel for analysis, and visualize the results.

To become a Data Analyst, you will need a mix of software engineering, statistics, and the ability to apply both to complex situations. Alongside your instructor as your mentor, you will gain a wide array of career skills for this fast growing, high demand field that will apply for years to come.

The Data Analytics Certificate program at Digital Workshop Center takes a modern approach to teaching data analysis - one that is frequently validated by hiring managers and will leave students fully prepared to pursue a variety of data driven career paths.

FAQ

Still have questions?  Visit our FAQ page for more help.

Includes

  • 198 hours of classroom training | Additional assignments outside of class
  • Download materials with practice data files
  • One month of technical support
  • Certificate of Completion

Objectives

Upon successful completion of this program, students will:

  • Learn SQL and relational database concepts
  • Organize and clean up data
  • Program with Python
  • Expand the Python language with pandas to solve complex data problems
  • Examine essential statistics functions and related SPSS terminology
  • Master the functions within Microsoft Excel as an analysis and reporting tool
  • Dive into AI and machine learning for data analysis
  • Expand your knowledge with sklearn and machine learning algorithms
  • Review the importance of your portfolio and job seeking skills for this industry
  • Present your final project for critique

Prerequisites

Basic Digital Literacy is required.